Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Transl Psychiatry ; 14(1): 187, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605002

RESUMO

Attention-deficit hyperactivity disorder (ADHD) is a neuropsychiatric disorder affecting both children and adolescents. Individuals with ADHD experience heterogeneous problems, such as difficulty in attention, behavioral hyperactivity, and impulsivity. Recent studies have shown that complex genetic factors play a role in attention-deficit hyperactivity disorders. Animal models with clear hereditary traits are crucial for studying the molecular, biological, and brain circuit mechanisms underlying ADHD. Owing to their well-managed genetic origins and the relative simplicity with which the function of neuronal circuits is clearly established, models of mice can help learn the mechanisms involved in ADHD. Therefore, in this review, we highlighting the important genetic animal models that can be used to study ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Humanos , Criança , Adolescente , Animais , Camundongos , Comportamento Impulsivo , Modelos Animais de Doenças , Atenção , Aprendizagem
2.
Curr Pharm Des ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500283

RESUMO

The popular perennial creeping plant known as Bacopa monnieri (also known as Brahmi) is being utilized in the Indian Ayurvedic medicine practice. It has a variety of bioactive phytoconstituents that have been used therapeutically to treat a number of serious illnesses. Ancient Vedic scholars used this herb because of its pharmacological effects, particularly as a nerve booster and nootropic supporter. However, it is vital to comprehend the active phytochemical components of Bacopa monnieri extract (BME) and their molecular mechanisms in order to better grasp the effect of BME on neurological illnesses and diseases. Understanding its active phytochemical constituents and their molecular processes is essential. Numerous clinical investigations indicated that BME may have neuroprotective benefits, so it is worthwhile to re-evaluate this wellknown plant. Here, we focused on neurological problems as we examined the pharmacological and phytochemical characteristics of BME. For their effective usage in neuroprotection and cognition, many clinical concerns and the synergistic potential of Bacopa extract have been investigated. Alzheimer's disease is a neurological condition caused by the production of reactive oxygen species, which also causes amyloid-beta (A) and tau protein aggregation and increases neuro-inflammation and neurotoxicity. Our review offers a more indepth molecular understanding of the neuroprotective functions of BME, which can also be connected to its therapeutic management of neurological illnesses and cognitive-improving effects.

3.
Brain Sci ; 14(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38539672

RESUMO

Diabetes is a chronic metabolic condition associated with high levels of blood glucose which leads to serious damage to the heart, kidney, eyes, and nerves. Elevated blood glucose levels damage brain function and cognitive abilities. They also lead to various neurological and neuropsychiatric disorders, including chronic neurodegeneration and cognitive decline. High neuronal glucose levels can cause drastic neuronal damage due to glucose neurotoxicity. Astrocytes, a type of glial cell, play a vital role in maintaining brain glucose levels through neuron-astrocyte coupling. Hyperglycemia leads to progressive decline in neuronal networks and cognitive impairment, contributing to neuronal dysfunction and fostering a neurodegenerative environment. In this review, we summarize the various connections, functions, and impairments of glial cells due to metabolic dysfunction in the diabetic brain. We also summarize the effects of hyperglycemia on various neuronal functions in the diabetic brain.

4.
Curr Protein Pept Sci ; 25(2): 183-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38275092

RESUMO

BACKGROUND: Melasma is a skin hyperpigmentary disorder that develops over time. Genetic factors, oxidative stress, female sex hormones, and UV light may all play a role in the disorder's progression. AIMS: To compare the levels of oxidative stress and tyrosinase activity in melasma patients with healthy volunteers. METHODS: After written consent, 130 patients were enrolled in a case-control study. 65 cases were of melasma disorder, and 65 were served as control. Homogenized skin tissues were taken and used to estimate superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx) (antioxidants), malondialdehyde (MDA) and tyrosine hydroxylase (TH). RESULTS: Melasma patients had lower basal levels of systemic antioxidants than healthy subjects. Tyrosinase activity was shown to be greater in lesional skin than in non-lesional skin. In controls, there was a good positive relationship between TH and MDA and an excellent negative relationship between GPx and GSH. In melasma patients, there were significant associations between CAT, GPx, SOD and MDA. CONCLUSIONS: Increased oxidative stress may affect tyrosinase activity and eumelanin synthesis via the anabolic pathway of melanin synthesis, according to our findings. In conclusion, we discovered a negative relationship between antioxidants and tyrosinase activity.


Assuntos
Melanose , Monofenol Mono-Oxigenase , Humanos , Feminino , Monofenol Mono-Oxigenase/metabolismo , Estudos de Casos e Controles , Estresse Oxidativo , Antioxidantes/metabolismo , Glutationa , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo
5.
Pathogens ; 12(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38133265

RESUMO

Human papillomavirus (HPV) is implicated in over 90% of cervical cancer cases, with factors like regional variability, HPV genotype, the population studied, HPV vaccination status, and anatomical sample collection location influencing the prevalence and pathology of HPV-induced cancer. HPV-16 and -18 are mainly responsible for the progression of several cancers, including cervix, anus, vagina, penis, vulva, and oropharynx. The oncogenic ability of HPV is not only sufficient for the progression of malignancy, but also for other tumor-generating steps required for the production of invasive cancer, such as coinfection with other viruses, lifestyle factors such as high parity, smoking, tobacco chewing, use of contraceptives for a long time, and immune responses such as stimulation of chronic stromal inflammation and immune deviation in the tumor microenvironment. Viral evasion from immunosurveillance also supports viral persistence, and virus-like particle-based prophylactic vaccines have been licensed, which are effective against high-risk HPV types. In addition, vaccination awareness programs and preventive strategies could help reduce the rate and incidence of HPV infection. In this review, we emphasize HPV infection and its role in cancer progression, molecular and immunopathogenesis, host immune response, immune evasion by HPV, vaccination, and preventive schemes battling HPV infection and HPV-related cancers.

6.
Curr Pharm Des ; 29(32): 2534-2544, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37921136

RESUMO

Multiple sclerosis (MS) is a central nervous system (CNS) immune-mediated disease that mainly strikes young adults and leaves them disabled. MS is an autoimmune illness that causes the immune system to attack the brain and spinal cord. The myelin sheaths, which insulate the nerve fibers, are harmed by our own immune cells, and this interferes with brain signal transmission. Numbness, tingling, mood swings, memory problems, exhaustion, agony, vision problems, and/or paralysis are just a few of the symptoms. Despite technological advancements and significant research efforts in recent years, diagnosing MS can still be difficult. Each patient's MS is distinct due to a heterogeneous and complex pathophysiology with diverse types of disease courses. There is a pressing need to identify markers that will allow for more rapid and accurate diagnosis and prognosis assessments to choose the best course of treatment for each MS patient. The cerebrospinal fluid (CSF) is an excellent source of particular indicators associated with MS pathology. CSF contains molecules that represent pathological processes such as inflammation, cellular damage, and loss of blood-brain barrier integrity. Oligoclonal bands, neurofilaments, MS-specific miRNA, lncRNA, IgG-index, and anti-aquaporin 4 antibodies are all clinically utilised indicators for CSF in MS diagnosis. In recent years, a slew of new possible biomarkers have been presented. In this review, we look at what we know about CSF molecular markers and how they can aid in the diagnosis and differentiation of different MS forms and treatment options, and monitoring and predicting disease progression, therapy response, and consequences during such opportunistic infections.


Assuntos
Esclerose Múltipla , Adulto Jovem , Humanos , Esclerose Múltipla/diagnóstico , Prognóstico , Biomarcadores , Bandas Oligoclonais/líquido cefalorraquidiano , Progressão da Doença , Diagnóstico Precoce
7.
Anticancer Agents Med Chem ; 23(20): 2171-2182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842886

RESUMO

According to a 2020 WHO study, cancer is responsible for one in every six fatalities. One in four patients die due to side effects and intolerance to chemotherapy, making it a leading cause of patient death. Compared to traditional tumor therapy, emerging treatment methods, including immunotherapy, gene therapy, photothermal therapy, and photodynamic therapy, have proven to be more effective. The aim of this review is to highlight the role of gold nanoparticles in advanced cancer treatment. A systematic and extensive literature review was conducted using the Web of Science, PubMed, EMBASE, Google Scholar, NCBI, and various websites. Highly relevant literature from 141 references was chosen for inclusion in this review. Recently, the synergistic benefits of nano therapy and cancer immunotherapy have been shown, which could allow earlier diagnosis, more focused cancer treatment, and improved disease control. Compared to other nanoparticles, the physical and optical characteristics of gold nanoparticles appear to have significantly greater effects on the target. It has a crucial role in acting as a drug carrier, biomarker, anti-angiogenesis agent, diagnostic agent, radiosensitizer, cancer immunotherapy, photodynamic therapy, and photothermal therapy. Gold nanoparticle-based cancer treatments can greatly reduce current drug and chemotherapy dosages.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Ouro , Nanopartículas Metálicas/uso terapêutico , Fotoquimioterapia/métodos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Fototerapia
8.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762346

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects most people worldwide. AD is a complex central nervous system disorder. Several drugs have been designed to cure AD, but with low success rates. Because the blood-brain and blood-cerebrospinal fluid barriers are two barriers that protect the central nervous system, their presence has severely restricted the efficacy of many treatments that have been studied for AD diagnosis and/or therapy. The use of nanoparticles for the diagnosis and treatment of AD is the focus of an established and rapidly developing field of nanomedicine. Recent developments in nanomedicine have made it possible to effectively transport drugs to the brain. However, numerous obstacles remain to the successful use of nanomedicines in clinical settings for AD treatment. Furthermore, given the rapid advancement in nanomedicine therapeutics, better outcomes for patients with AD can be anticipated. This article provides an overview of recent developments in nanomedicine using different types of nanoparticles for the management and treatment of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Nanomedicina , Sistema Nervoso Central , Encéfalo
9.
Microorganisms ; 11(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37512962

RESUMO

Bacterial wilt disease of tomato (Solanum lycopersicum L.), incited by Ralstonia solanacearum (Smith), is a serious agricultural problem in India. In this investigation, chemical mutagenic agents (NTG and HNO2 treatment) and ultraviolet (UV) irradiation have been used to enhance the antagonistic property of Bacillus amyloliquefaciens DSBA-11 against R. solanacearum UTT-25 towards an effective management of tomato wilt disease. The investigation established the fact that maximum inhibition to R. solanacearum UTT-25 was exerted by the derivative strain MHNO2-20 treated with nitrous acid (HNO2) and then by the derivative strain MNTG-21 treated with NTG. The exertion was significantly higher than that of the parent B. amyloliquefaciens DSBA-11. These two potential derivatives viz. MNTG-21, MHNO2-20 along with MUV-19, and a wild derivative strain of B. amyloliquefaciens i.e.,DSBA-11 were selected for GC/MS analysis. Through this analysis 18 major compounds were detected. Among the compounds thus detected, the compound 3-isobutyl hexahydropyrrolo (1,2), pyrazine-1,4-dione (4.67%) was at maximum proportion in the variant MHNO2-20 at higher retention time (RT) of 43.19 s. Bio-efficacy assessment observed a record of minimum intensity (9.28%) in wilt disease and the highest bio-control (88.75%) in derivative strain MHNO2-20-treated plants after 30 days of inoculation. The derivative strain MHNO2-20, developed by treating B. amyloliquefaciens with nitrous acid (HNO2), was therefore found to have a higher bio-efficacy to control bacterial wilt disease of tomato under glasshouse conditions than a wild-type strain.

10.
Curr Pharm Des ; 29(22): 1729-1740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519209

RESUMO

Cancer is a collection of diseases in which aberrant cells grow uncontrolled and invade surrounding tissues. Cancer can be classified as carcinoma, sarcoma, leukemia, or lymphoma. The deadliest cancers are lung, breast, colorectal, pancreatic, and prostate. Chemotherapy, surgery, and radiotherapy are the usual cancer treatments. However, drug resistance poses a significant barrier to cancer treatment. Macroalgae are wellknown producers of bioactive compounds with antimicrobial, antioxidant, anti-inflammatory, and anti-cancer properties. Red algae, in particular, are a prominent source of bioactive substances, such as polysaccharides, phenolic compounds, lipids, sterols, alkaloids, and terpenoids. Therefore, molecules from marine resources could be an appealing way to identify new cancer treatment alternatives. This study aimed to provide a brief overview of what is currently known regarding the potential of red macroalgae in cancer treatment by discussing the primary therapeutic targets of the disease and identifying compounds or extracts with bioactive characteristics against them.


Assuntos
Alcaloides , Anti-Infecciosos , Neoplasias , Rodófitas , Alga Marinha , Humanos , Polissacarídeos , Neoplasias/tratamento farmacológico
11.
Artigo em Inglês | MEDLINE | ID: mdl-37183465

RESUMO

Diabetes mellitus (DM) is the most common metabolic disorder that occurs due to the loss, or impaired function of insulin-secreting pancreatic beta cells, which are of two types - type 1 (T1D) and type 2 (T2D). To cure DM, the replacement of the destroyed pancreatic beta cells of islet of Langerhans is the most widely practiced treatment. For this, isolating neuronal stem cells and cultivating them as a source of renewable beta cells is a significant breakthrough in medicine. The functions, growth, and gene expression of insulin-producing pancreatic beta cells and neurons are very similar in many ways. A diabetic patient's neural stem cells (obtained from the hippocampus and olfactory bulb) can be used as a replacement source of beta cells for regenerative therapy to treat diabetes. The same protocol used to create functional neurons from progenitor cells can be used to create beta cells. Recent research suggests that replacing lost pancreatic beta cells with autologous transplantation of insulin-producing neural progenitor cells may be a perfect therapeutic strategy for diabetes, allowing for a safe and normal restoration of function and a reduction in potential risks and a long-term cure.

12.
Int J Nanomedicine ; 18: 2659-2676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223276

RESUMO

Although various treatments are currently being developed, lung cancer still has a very high mortality rate. Moreover, while various strategies for the diagnosis and treatment of lung cancer are being used in clinical settings, in many cases, lung cancer does not respond to treatment and presents reducing survival rates. Cancer nanotechnology, also known as nanotechnology in cancer, is a relatively new topic of study that brings together scientists from a variety of fields, including chemistry, biology, engineering, and medicine. The use of lipid-based nanocarriers to aid drug distribution has already had a significant impact in several scientific fields. Lipid-based nanocarriers have been demonstrated to help stabilize therapeutic compounds, overcome barriers to cellular and tissue absorption, and improve in vivo drug delivery to specific target areas. For this reason, lipid-based nanocarriers are being actively researched and used for lung cancer treatment and vaccine development. This review discusses the improvements in drug delivery achieved with lipid-based nanocarriers, the obstacles that still exist with in vivo applications, and the current clinical and experimental applications of lipid-based nanocarriers in lung cancer treatment and management.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanotecnologia , Lipídeos
13.
Med Chem ; 19(9): 848-858, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37055895

RESUMO

Quinoline and its analogues are found in various natural products, many of which are active pharmacophores with significant bioactivities. This article discussed the plethora of quinoline derivatives and their analogues that have anti-cancer properties. The review will be helpful for the scientific community since several possible anticancer drugs based on quinolines are discussed here. In addition to this, the synthetic aspect of many such quinoline derivatives showing anti-cancer activities is also revealed in this article. These quinoline-based anti-oncogenic molecules can be synthesized using several acids, bases, and azides or with the help of reagents like Jone's reagent and Lawesson's reagent.


Assuntos
Antineoplásicos , Neoplasias , Quinolinas , Humanos , Neoplasias/tratamento farmacológico , Indicadores e Reagentes/uso terapêutico
14.
Life (Basel) ; 13(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37109528

RESUMO

Alzheimer's disease (AD) is a neurological condition that worsens with ageing and affects memory and cognitive function. Presently more than 55 million individuals are affected by AD all over the world, and it is a leading cause of death in old age. The main purpose of this paper is to review the phytochemical constituents of different plants that are used for the treatment of AD. A thorough and organized review of the existing literature was conducted, and the data under the different sections were found using a computerized bibliographic search through the use of databases such as PubMed, Web of Science, Google Scholar, Scopus, CAB Abstracts, MEDLINE, EMBASE, INMEDPLAN, NATTS, and numerous other websites. Around 360 papers were screened, and, out of that, 258 papers were selected on the basis of keywords and relevant information that needed to be included in this review. A total of 55 plants belonging to different families have been reported to possess different bioactive compounds (galantamine, curcumin, silymarin, and many more) that play a significant role in the treatment of AD. These plants possess anti-inflammatory, antioxidant, anticholinesterase, and anti-amyloid properties and are safe for consumption. This paper focuses on the taxonomic details of the plants, the mode of action of their phytochemicals, their safety, future prospects, limitations, and sustainability criteria for the effective treatment of AD.

15.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985759

RESUMO

Traditional medicines are nature's gift and our native heritage, which play a vital role in maintaining a disease-free life. Artemisia vestita Wall. ex Besser (family: Asteraceae), popularly known as "Kubsha" or "Russian wormwood", is a highly enriched folklore medicine with wound- healing, antiphlogistic, antifebrile, antifeedant, anti-helminthic, antimicrobial, antiviral, antitumor, and antiproliferative potential attributed to the presence of various volatile and non-volatile secondary metabolites. A systematic and extensive review of the literature on A. vestita was carried out via the Web of Science, PubMed, INMEDPLAN, EMBASE, Google Scholar, and NCBI, as well as from several websites. The highly relevant literature contained in 109 references was selected for further inclusion in this review. A total of 202 bioactive compounds belonging to different chemical classes such as terpenoids, coumarins, flavonoids, alkaloids, acetylenes, tannins, carotenoids, and sterols have been reported in A. vestita, which are responsible for different pharmacological activities. The chemical structures obtained from the PubChem and Chem Spider databases were redrawn using the software Chem Draw® version 8.0. This review paper summarizes the distribution, botanical description, phytochemistry, pharmacological activities, and conservation of A. vestita, which will assist scientists for further investigation. Extensive studies on the active constituents, pharmaceutical standardization, mode of action, and sustainable conservation of A. vestita are needed to further explore its wound-healing and allied medicinal properties.


Assuntos
Artemisia , Fitoterapia , Etnofarmacologia , Compostos Fitoquímicos/química , Medicina Tradicional , Extratos Vegetais/farmacologia , Extratos Vegetais/química
16.
Int J Nanomedicine ; 18: 35-48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36636642

RESUMO

Cancer is a broad term for a group of diseases involving uncontrolled cell growth and proliferation. There is no cure for cancer despite recent significant improvements in screening, treatment, and prevention approaches. Among the available treatments, immunotherapy has been successful in targeting and killing cancer cells by stimulating or enhancing the body's immune system. Antibody-based immunotherapeutic agents that block immune checkpoint proteins expressed by cancer cells have shown promising results. The rapid development of nanotechnology has contributed to improving the effectiveness and reducing the adverse effects of these anti-cancer immunotherapeutic agents. Recently, engineered nanomaterials have been the focus of many state-of-The-art approaches toward effective cancer treatment. In this review, the contribution of various nanomaterials such as polymeric nanoparticles, dendrimers, microspheres, and carbon nanomaterials in improving the efficiency of anti-cancer immunotherapy is discussed as well as nanostructures applied to combination cancer immunotherapy.


Assuntos
Antineoplásicos , Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Nanotecnologia/métodos , Nanoestruturas/química , Nanopartículas/uso terapêutico , Imunoterapia/métodos
17.
Int J Biol Macromol ; 231: 123148, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36639074

RESUMO

Porphyran is known to inhibit immune cell function. Previously, porphyran was shown to prevent lipopolysaccharide-induced sepsis in mice. However, studies on the inhibitory effects of porphyran during colitis are currently lacking. In this study, we evaluated the effects of Pyropia yezoensis-derived porphyran on dextran sodium sulfate (DSS)-induced acute and chronic colitis. The oral or intraperitoneal administration of porphyran inhibited the progression of DSS-induced colitis in mice, with the former also preventing immune cell infiltration in the colon. The levels of intracellular interferon-γ and interleukin-17 in T cells decreased when porphyran was administered orally. Porphyran inhibited T cell activation by suppressing dendritic cells (DCs) and macrophages. Porphyran prevented pathogen-associated molecular pattern and damage-associated molecular pattern-dependent DC and macrophage activation. Finally, porphyran attenuated chronic colitis caused via the long-term administration of DSS. These findings indicate that the oral administration of porphyran can inhibit DSS-induced colitis by suppressing DC and macrophage activation.


Assuntos
Colite , Rodófitas , Animais , Camundongos , Colite/induzido quimicamente , Colo , Sefarose/farmacologia , Células Dendríticas , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
18.
Biology (Basel) ; 13(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38248439

RESUMO

This review summarizes the protective effects of probiotics against Alzheimer's disease (AD), one of the most common neurodegenerative disorders affecting older adults. This disease is characterized by the deposition of tau and amyloid ß peptide (Aß) in different parts of the brain. Symptoms observed in patients with AD include struggles with writing, speech, memory, and knowledge. The gut microbiota reportedly plays an important role in brain functioning due to its bidirectional communication with the gut via the gut-brain axis. The emotional and cognitive centers in the brain are linked to the functions of the peripheral intestinal system via this gut-brain axis. Dysbiosis has been linked to neurodegenerative disorders, indicating the significance of gut homeostasis for proper brain function. Probiotics play an important role in protecting against the symptoms of AD as they restore gut-brain homeostasis to a great extent. This review summarizes the characteristics, status of gut-brain axis, and significance of gut microbiota in AD. Review and research articles related to the role of probiotics in the treatment of AD were searched in the PubMed database. Recent studies conducted using animal models were given preference. Recent clinical trials were searched for separately. Several studies conducted on animal and human models clearly explain the benefits of probiotics in improving cognition and memory in experimental subjects. Based on these studies, novel therapeutic approaches can be designed for the treatment of patients with AD.

19.
Curr Pharm Des ; 28(46): 3671-3676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36475344

RESUMO

In this review article, we present the updated evidence of therapeutic applications of fucoidan (a seaweed polysaccharide) and its novel potential to treat infectious diseases such as coronavirus disease (COVID-19). Because of their many biological activities, seaweeds have been identified as a rich and useful source of bioactive chemicals. Sulfated polysaccharides from the sea are considered a source of physiologically active chemicals that might be used in medication development. Antitumor, antiviral, antioxidant, antibacterial, anticoagulant, and immune-inflammatory properties have all been described for these compounds. By interfering at various phases of viral infection, marine sulfated polysaccharide has a virucidal effect. As a result, it opens the door to the development of antiviral treatments. Virus entry into host cells is an initial process, avoiding this type of entry makes any precautionary measure effective. The inhibitory action of certain marine sulfated polysaccharides against coronavirus was tested, and fucoidan, iota-carrageenan, and sea cucumber sulfated polysaccharides all showed a substantial antiviral impact. Fucoidan is one of the useful sulfated polysaccharides that has been widely studied and explored in various research. There are different sources of fucoidans, which have been used in the treatment of viral infection. Additionally, we highlight the mechanism of action of fuocidan against COVID-19. Hence, we could suggest that COVID-19 might be prevented and treated using these sulfated polysaccharides. This review thus highlights ample evidence to support the hypothesis that a large number of drugs have been developed from powerful compounds isolated from marine seaweeds.


Assuntos
COVID-19 , Alga Marinha , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Alga Marinha/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Sulfatos/química
20.
Plants (Basel) ; 11(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36365379

RESUMO

Chickpea (Cicer arietinum L.), the world's second most consumed legume crop, is cultivated in more than 50 countries around the world. It is a boon for diabetics and is an excellent source of important nutrients such as vitamins A, C, E, K, B1-B3, B5, B6, B9 and minerals (Fe, Zn, Mg and Ca) which all have beneficial effects on human health. By 2050, the world population can cross 9 billion, and in order to feed the teaming millions, chickpea production should also be increased, as it is a healthy alternative to wheat flour and a boon for diabetics. Moreover, it is an important legume that is crucial for food, nutrition, and health security and the livelihood of the small-scale farmers with poor resources, in developing countries. Although marvelous improvement has been made in the development of biotic and abiotic stress-resistant varieties, still there are many lacunae, and to fulfill that, the incorporation of genomic technologies in chickpea breeding (genomics-assisted breeding, high-throughput and precise-phenotyping and implementation of novel breeding strategies) will facilitate the researchers in developing high yielding, climate resilient, water use efficient, salt-tolerant, insect/pathogen resistant varieties, acceptable to farmers, consumers, and industries. This review focuses on the origin and distribution, nutritional profile, genomic studies, and recent updates on crop improvement strategies for combating abiotic and biotic stresses in chickpea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...